References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CONARD, B. R. (1969). Ph.D. thesis, Iowa State University.
- CONARD, B. R. & FRANZEN, H. F. (1971). *High Temp. Sci.* **3**, 49.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891.
- DAHM, D. J., BENSEN, J. E., NIMROD, D. M., FITZWATER, D. R. & JACOBSON, R. A. (1967). USAEC Report IS-1701. EDSHAMMAR, L. E. (1962). Acta Chem. Scand. 16, 20.
- EDSHAMMAR, L. E. (1902). Acta Chem. Scana. 10, 20. En terre H. E. & Kieppen I. C. (1059). Acta Caust 11, 19.
- FRANK, H. F. & KASPER, J. C. (1958). Acta Cryst. 11, 184.
- FRANK, H. F. & KASPER, J. C. (1959). Acta Cryst. 12, 483.
- FRANZEN, H. F. (1966). J. Inorg. Nucl. Chem. 28, 1575.
- FRANZEN, H. F., BEINEKE, T. A. & CONARD, B. R. (1968). Acta Cryst. B24, 412.

- FRANZEN, H. F. & SMEGGIL, J. (1969). Acta Cryst. B25, 1736.
- FRANZEN, H. F. & SMEGGIL, J. (1970). Acta Cryst. B26, 125.
- FRANZEN, H. F., SMEGGIL, J. & CONARD, B. R. (1967). Mat. Res. Bull. 2, 1087.
- HANSEN, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- JAMIESON, J. C. (1963). Science, 140, 72.
- OWENS, J. P., CONARD, B. R. & FRANZEN, H. F. (1967). Acta Cryst. 23, 77.
- PEARSON, W. B. (1967). A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2. International Series of Monographs in Metal Physics and Physical Metallurgy, Vol. 8. Oxford; Pergamon Press.
- PEDERSEN, B. & GRØNVOLD, F. (1959). Acta Cryst. 12, 1022.
- SCHUBERT, K., RAMAN, A. & ROSSTEUTSCHER, W. (1964). *Naturwiss.* **51**, 506.

Acta Cryst. (1972). B28, 1404

The Crystal Structure of V₄O₇

BY HIROYUKI HORIUCHI, MASAYASU TOKONAMI* AND NOBUO MORIMOTO

Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, Japan

AND KOICHI NAGASAWA[†]

Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan

(Received 2 October 1971)

Single crystals of V_4O_7 were synthesized by the chemical transport method. They are triclinic with space group PI and with a=5.504, b=7.007, c=19.243 Å, $\alpha=41.3$, $\beta=72.5$, $\gamma=109.4^{\circ}$ and Z=2. 542 crystallographically independent reflexions were collected with a 4-circle single-crystal diffractometer. The structure was refined by full-matrix least-squares analysis to an R value of 0.084 for all the observed reflexions. The structure of V_4O_7 indicates considerable displacements of atoms from the ideal structure proposed by Andersson & Jahnberg [*Ark. Kem.* (1963), **21**, 413]. In particular, the distortions of the VO_6 octahedra in the crystallographic shear boundary are remarkable. The V-O distances are in the range $1.78 \simeq 2.12$ Å and the O-O distances in the range $2.52 \simeq 3.00$ Å. The shortest V-V distance is 2.778 Å in the crystallographic shear plane.

Introduction

In the composition range VO_x, 1.750 < x < 1.887, the existence of the homologous series of $V_nO_{2n-1}(4 \le n \le 8)$, was revealed by X-ray powder diffraction (Andersson, Collen, Kuylenstierna & Magneli, 1957). The structure of Ti₅O₉, which is isostructural with V₅O₉, was then determined by the X-ray single-crystal method (Andersson, 1960). The structure model of Ti₅O₉ was extended and successfully used to interpret the X-ray powder patterns of the other members

of the series of V_nO_{2n-1} and Ti_nO_{2n-1} by Andersson & Jahnberg (1963).

However, details of the crystal structures of the homologous series of V_nO_{2n-1} and Ti_nO_{2n-1} have been unknown because of the difficulty in obtaining single crystals suitable for X-ray single crystal work.

Single crystals of V_nO_{2n-1} ($3 \le n \le 8$), of size 1 to 5 mm, were recently synthesized by the chemical transport method (Nagasawa, 1972), and the crystallography of V_nO_{2n-1} was studied, using these crystals, by the X-ray single-crystal method (Horiuchi, Tokonami, Morimoto, Nagasawa, Bando & Takada, 1972). According to this study, the lattices of the homologous series of V_nO_{2n-1} ($\mathbf{a}_n, \mathbf{b}_n$ and $\mathbf{c}_n, 4 \le n \le 8$) can be systematically described on the basis of the parent rutile-type lattice ($\mathbf{a}_n, \mathbf{b}_n$ and \mathbf{c}_n) as follows:

^{*} Present address: Mineralogisches Institut der Universität, 355 Marburg/Lahn, Deutschhausstrasse 10, Germany.

[†] Present address: Central Research Laboratory, Mitsubishi Electric Corp., Amagasaki, Hyogo, Japan.

$$\mathbf{a}_n = -\mathbf{a}_r + \mathbf{c}_r$$

$$\mathbf{b}_n = \mathbf{a}_r + \mathbf{b}_r + \mathbf{c}_r$$

$$\mathbf{c}_n = \frac{1}{2}(2n-1) (\mathbf{b}_r + \mathbf{c}_r) .$$

In this investigation the crystal structure of V_4O_7 has been precisely determined in order to elucidate the deviation from the ideal structure derived from the parent rutile structure by introducing a crystallographic shear (Andersson & Jahnberg, 1963), and, especially to study the distortion of the VO₆ octahedra in the crystallographic shear planes. The differences among the structures of the members of the homologous series must also be of interest in considering their crystal chemical characteristics. The details of the crystal structures of other members of the series will be published soon.

Experimental

The single crystals of V_4O_7 of size 1 to 5 mm were obtained by the chemical transport method (Nagasawa, 1972). As indicated by Andersson & Jahnberg (1963), the space group of V_4O_7 was proved to be P1 or PT from the precession photographs. A small crystal fragment of size approximately $0.03 \times 0.05 \times 0.03$ mm was used for collecting the three-dimensional intensity data, and 542 independent reflexions with $2\theta \le 45.0^{\circ}$ were measured with a RIGAKU four-circle automatic diffractometer using the $2\theta - \omega$ scan technique and Zrfiltered Mo Ka radiation ($\lambda = 0.71069$ Å). The scanning width $\Delta \omega$ was given by the relation; $\Delta \omega = 0.60 +$ 0.30 tan θ (degrees). The integrated intensities were converted into structure factors by applying the Lorentz-polarization corrections. Absorption corrections were ignored owing to the small diameter of the specimen ($\mu R = 0.26$).

The crystal lattice of V₄O₇ was determined in accordance with the studies of Horiuchi et al. (1972), and the cell dimensions were obtained based upon the three high Bragg-angle reflexions, 520, 020 and 1,6,18 measured with the four-circle diffractometer. They are $a = 5.504 \pm 0.003, b = 7.007 \pm 0.004, c = 10.243 \pm 0.009 \text{ Å},$ $\alpha = 41 \cdot 3 \pm 0 \cdot 1$, $\beta = 72 \cdot 5 \pm 0 \cdot 1$ and $\gamma = 109 \cdot 4 \pm 0 \cdot 1^{\circ}$. These values are in good agreement with those obtained by Andersson & Jahnberg (1963), if their crystal axes are transformed by the matrix $100/010/1\frac{5}{2}\frac{1}{2}$ (Horiuchi et al., 1972). The standard deviations of the cell dimensions were estimated from the equation $\Delta d/d = -\cot \theta \Delta \theta$, where the above three Bragg angles were substituted for θ and accuracy of the angles on the 4-circle diffractometer, $1^{\circ}/100$ or 1.7×10^{-4} radians for $\Delta \theta$.

Structure refinement

The refinement of the structure was initiated from the ideal structure given by Andersson & Jahnberg (1963). The initial atomic coordinates x, y and z (Table 1) were obtained from those by Andersson & Jahnberg,

 x_A , y_A and z_A , by the following relation (Horiuchi *et al.*, 1971),

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{pmatrix} \quad \begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix}$$

Table 1. The starting atomic coordinates and temperature factors for V_4O_7

These atomic coordinates are derived from the structure by Andersson & Jahnberg (1963) as explained in the text.

x	У	Z	В
0	0.5	0.072	0.3
0	0	0.072	0.3
0	0.5	0.358	0.3
0	0	0.328	0.3
0.695	0.5	0.016	0.5
0.306	0.614	0.094	0.2
0.695	0.5	0.158	0.5
0.306	0.2	0.220	0.5
0.695	0.387	0.334	0.5
0.306	0.613	0.380	0.2
0.695	0.5	0.444	0.5
	x 0 0 0 0.695 0.306 0.695 0.306 0.695 0.306 0.695 0.306 0.695	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Full-matrix least-squares refinement was carried out using a FACOM 230-00 version* of the program ORFLS of Busing, Martin & Levy (1962). The function minimized in this refinement was $\sum 1/\sigma_{hkl}^2 |sF_o - F_c|$, where σ_{hkl} is the value given by the counting statistics when $|F_o| \neq 0$, and is 10.0 when $|F_o| = 0$, and s is the scale factor. Only the final refinement was carried out using equal weight for all reflexions as described later.

Atomic scattering factors used first for the vanadium and oxygen atoms were those of V^{3+} and O^{2-} respectively. However, as mentioned later, those of V^{3+} and V^{4+} for vanadium atoms were used in the last stage of the refinement in order to keep electrostatic neutrality. The atomic scattering factors for V^{3+} and V^{4+} , and for O^{2-} were taken from Fukamachi (1971) and Tokonami (1965) respectively. The isotropic temperature fac-

Table 2. The final atomic coordinates and temperature factors for V_4O_7

Standard errors in parentheses apply to the last digits.

	x	У	z	В
V(1)	-0.00698 (97)	0.4482 (11)	0.09478 (40)	0.45 (4)
V(2)	-0.01739(95)	-0.0610(11)	0.10066 (39)	0.34 (4)
V(3)	-0.01163 (96)	0.4870 (11)	0.36698 (40)	0.43 (4)
V(4)	-0.03145(95)	-0.0363(11)	0.37327 (40)	0.37 (4)
O(I)	0.6973 (40)	0.4174 (46)	0.0498 (16)	1.04 (19)
O(2)	0.3230 (40)	0.5560 (46)	0.1039 (16)	0.98 (18)
$\dot{O}(3)$	0.6896 (39)	0.4735 (45)	0.1684 (16)	0.78 (17)
O(4)	0.3829 (38)	0.6268(44)	0.2235 (16)	0.71 (17)
$\hat{O}(5)$	0.6934 (39)	0.4161(45)	0.3317 (16)	1.01 (18)
O (6)	0.3026 (40)	0.5661 (46)	0.3924 (16)	1.05 (18)
O(7)	0.6602 (38)	0.4332 (43)	0.4697 (16)	0.67 (17)

* The least-squares program for the FACOM 230-60 was modified by Syoyama and Horiuchi from the program *RSFLS4* (HITAC 5020E version of *ORFLS*) of the UNICS system. (Saturai, 1967). tors were initially assumed to be 0.3 Å^2 for vanadium atoms and 0.5 Å^2 for oxygen atoms.

The initial structure mentioned above gave $R(\sum |s|F_o| - |F_c||/\sum s|F_o|) = 0.493$ for all 542 reflexions. The first four cycles of least-squares on F_o 's were carried out varying only the atomic coordinates and the scale factor and the *R* value dropped to 0.098. In the next two cycles, the isotropic temperature factors were allowed to vary. The atomic coordinates and the isotropic temperature factors were refined at the same time in the next five cycles, which reduced the *R* value

to 0.093 and the weighted R value to 0.077 for all reflexions. Finally, the atomic coordinates and the isotropic temperature factors were refined using equal weight for all reflexions. This reduced the R value to 0.084 for all reflexions and 0.069 for all non-zero reflexions.

In order to examine the possibility of space group P1, a three-dimensional $F_o - F_c$ synthesis was calculated with the final atomic coordinates and temperature factors by using the FACOM 230-60 version of the program 3DFR written by Iitaka and Matsusaki.

Table 3. Observed and calculated structure factors for V_4O_7

The three columns are, in order: l, $10|F_o|$, $10F_c$.

	h=0,k=0	h=1,k=0	h=2,k=1	h=3,k=1	h=-1,k=2	h=-2,k=2	h=-3,k=2	h=-4,k=3
-1	128 150	2 210 190	12 0 -14	8 60 -69	7 1141 - 1244 6 342 - 328	6 306 -314	3 238 262	2 63 -15
-3	233 208	0 919 921	10 78 -91	h-3 k-3	5 210 -197	5 135 -145	1 137 141	1 24 -41
-4	926 -954	-1 0 -23	9 32 12	18 66 -71	4 876 -858	4 703 -721	0 1169 1258	0 306 -277
-5	170 -166	-2 149 158	8 79 -60	17 56 24	3 994 918 2 439 409	3 640 653	-1 82 -97	-1 64 50
-0	223 -210	-4 618 -644	6 52 50	16 34 -18	1 275 275	1 225 215	-3 77 -85	~3 53 -40
9	h=0,k=1	halk=l	5 42 -51	15 0 18	0 1148 1197	0 494 418	-4 968 -980	-4 127 93
8	0 42	11 69 28	4 37 -18	13 0 -4	-1 211 -220	-1 193 $-187-2$ 139 -141	-5 184 -160	h = -4, $k = 4$
7	74 -33	10 0 45	3 56 /5	12 58 84	-2 85 -78	-3 5 39	h=-3,k=3	5 65 65
6	23 -1 33 16	9 52 -27 8 22 -4	h=2.k=2	11 0 -34	h=-1, k=3 11 25 25	-4 664 -676	6 0 -12 5 0 16	3 655 625
4	23 2	7 611 -583	15 529 -504	h=3, k=4	10 0 -21	h = -2, k = 3	4 110 -81	2 395 380
3	26 26	6 0 -11	14 441 409	18 664 -658	9 44 32	9 19 14	3 89 98	1 127 116
2	43 -29	5 47 - 34 4 0 5	12 227 206	17 119 -106	8 50 57	7 88 56	2 38 27	~1 355 -346
ō	661 -664	3 69 50	11 1107 1135		6 31 31	6 52 -29	0 0 -7	b4 k-5
-1	73 -84	2 60 -62		14 435 442	5 0 -39	5 30 -7	-1 22 -39	8 47 20
-3	0 -0	0 245 235	8 103 108	h=4.k=0	3 42 -50	3 58 -45	-2 33 24	7 0 -29
	h=0.k=2	-1 0 -21	7 1265 -1346	8 249 249	2 0 -38	2 0 -24	9 163 -161	5 0 -32
11	623 637	h=1,k=2	6 153 -158 5 242 -238	7 367 - 378	1 89 /8	0 314 312	8 64 .76	4 125 -116
10	0 7	13 139 122	5 242 250	5 290 -289	h=-1,k=4	-1 0 -21	7 479 -494	3 63 52
9	219 224	11 957 924	n=2, k=3 17 81 -59	h=4.k=1	12 172 158	h=-2.k=4	5 0 2	2 43 -22
7	752 -726	10 32 23	16 0 -15	15 0 -5	11 734 758	11 643 644	4 389 -351	n=-4,k=6
6	440 -410	9 60 54		14 62 -20	10 232 -226	10 162 -150	3 701 684	8 35 -62
4	363 -340 790 -727	7 863 -832	13 72 -78	13 60 36	8 119 -107	9 265 -265	1 139 129	7 561 -531
3	778 797	6 207 -204	12 0 -1	11 126 115	7 1236 -1311	7 1216 -1318	h=-3.k=5	5 113 50
2	282 281	5 242 -242	11 96 -92	10 63 -69	6 95 -94	6 129 -133	11 68 -29	b==5 k=0
ō	799 817	3 538 552	9 0 50	9 21 25	4 96 -88	5 0 10		-11 733 714
-	h=0.k=3	2 156 155	8 94 -101	b=4 k=2	h=-1.k=5	4 355 -337 3 803 806	8 41 -31	-12 81 61
13	0 -5	h=1,k=3	h=2, $k=4$	17 246 -225	15 0 -3	2 236 227	7 311 -298	-13 49 -50
12	0 -15	15 0 -18	19 39 16	16 255 -246	14 286 284	h=-2,k=5	6 24 8 5 35 -23	h=-5,k=1
10	79 57	14 329 -291	17 81 -65	15 515 -516	13 32 - 35 12 0 0	13 37 19	4 125 97	-6 0 -4
9	0 10	12 54 61	16 107 -120	13 67 74	11 0 20	12 65 29	h=-3,k=6	-7 73 -21
8	13 5	11 0 -9	15 264 -273	12 203 201	10 82 -83	10 0 -2	12 42 34	-8 0 -36
6	54 36	10 79 -77	13 230 212	11 533 529 b=4 k=3	8 75 -32	9 61 49	11 541 521	-10 116 -109
5	40 -41	8 86 -99	12 267 260	18 64 46	7 24 22	8 44 -39	9 333 -319	h=-5.k=2
4	93 74	7 0 -25	11 527 522	17 69 84	h=-1,k=6	6 75 43	8 134 -104	-2 107 -115
2	53 50	5 37 42 5 83 -68	h=2,k=5		17 38 3	5 40 -42	7 536 -513	-3 147 135
15	h=0, k=4	b-1 k-4	20 0 10	15 111 105	16 /5 61	n = -2, k = 6 15 121 -127	h=-3,k=7	-4 388 -583
14	447 461	17 220 210	18 46 -33	10 125 107	14 450 441	14 773 749	12 73 49	-6 0 -3
13	297 301	16 84 -78	17 0 20	9 262 256	13		11 29 -29	-7 311 -285
11	810 875	15 391 -389	15 61 12	8 177 189	11 413 392	11 400 384	10 0 33	h=-5,k=3
10	381 - 378	13 293 303	h=3.k=0	h=5,k=1	10 428 -422	10 532 -503	h=-4,k=0	
9	200 -196	12 244 243	6 246 -261	15 59 49	h=-1,k=7	9 289 -281	-9 255 247	-2 0 -30
7	480 -493	11 675 692	5 430 -440	13 32 -47	18 66 21	8 11J -100	-11 657 671	-3 58 -59
6	50 39	9 102 -102	3 397 393	12 52 41	16 57 -24	16 54 -28		-4 61 -/8
	h=0,k=5	8 102 -97	2 60 14	h=-1,k=0	15 0 38	15 0 -10	-13 30 -03	n=-5,K=4
17	40 20	h=1,k=5	1 132 148	-3 593 562	h=-2,k=0	14 51 33	-2 65 -40	1 72 68
15	72 45	19 0 17	h=3,k=1	-5 340 -332	-5 407 -378	12 62 31	-3 0 -31	0 461 443
14	0 -11	17 45 44	14 209 185	-6 309 -316	-6 262 -248	h=-3.k=0	-4 119 117	-1 297 -273
13	24 -9	16 86 -58	12 54 -20	-7 236 -240	-8 477 461	-7 1061 -1074	-5 / -24	h=-5,k=5
11	64 -54	15 42 42 14 252 -238	11 0 -16	b=-l k=l	-9 167 158	-8 441 441	-7 355 -323	3 127 -108
10	86 -61	13 89 -88	10 14 83 9 71 61	6 71 -72	-10 242 227	-10 53 62	-8 0 8	2 0 -19
9	0 37	12 41 34	8 0 -33	5 25 10	h=-2,k=1	-11 772 753	-10 71 85	
10	h=0,k=6	h=1,k=6	7 29 -12	4 0 33 3 101 -75	3 86 -88	h=-3,k=1	h=-4.k=2	
18	4/ -51	20 238 -219	ь 54, 58 5 42 –14	2 0 -20	2 78 68	1 81 -72	1 51 67	
17	0 1	18 703 -683	4 120 110	1 0 -4	1 0 12		0 694 866	
16	61 59	17 94 75	h=3.k=2	0 0 11	-1 0 -6	-2 0 30	-1 0 -6 -2 154 -152	
14	100 -122	16 82 60	16 202 -203	-2 40 27	-2 0 6	-3 126 110	-3 224 214	
13	147 143	h=2,k=0	15 545 -535	-3 116 -120	-3 0 35	-4 114 107	-4 972 -1005	
	h=0,k=7	4 945 –930 ว 414 วยา	13 49 142	-4 41 -53	-4 136 -134 -5 27 1	-6 0 10	-5 291 -270 -6 124 -99	
19	0 -38	2 64 60	12 246 246	-5 /1 42	-6 0 -55	-7 321 281	-7 205 -195	
18	48 -11	1 212 229	11 851 871	n=-1,K=2 9 60 -58	-7 42 63	-8 0 5		
		0 616 631 -1 59 -68	9 52 27 9 52 27	8 177 186				

This gave zero electron density in the whole unit cell, which confirmed that the space group was $P\overline{1}$.

The final atomic coordinates and the temperature factors are given in Table 2. Observed and calculated structure factors are compared in Table 3.

Discussion of the structure

The structure of V_4O_7 obtained in this investigation is schematically shown on the basis of the rutile-type lattice, \mathbf{a}_r , \mathbf{b}_r and \mathbf{c}_r (r represents the rutile-type cell,

Fig. 1. The crystal structure of V_4O_7 . The lattice vectors of V_4O_7 are shown by **a**, **b**, and **c**. Tetragonal rutile-type lattices $(a_r, b_r \text{ and } c_7)$ are shown with fine lines.

Fig. 2. The arrangement of the octahedra of oxygen atoms in the structure of V₄O₇. Open circles represent vanadium atoms.

Fig. 1). Interatomic distances and bond angles (Table 4) were calculated by using the FACOM 230-60 version of the program RDA4 of the UNICS system (Sakurai, 1967).

According to Andersson & Jahnberg (1963), the structure of V_nO_{2n-1} and Ti_nO_{2n-1} can be described as follows: their structures are built up of slabs of a rutile-type structure, the slabs being of infinite extension in two dimensions, and mutually connected along the 'crystallographic shear plane' (Wadsley, 1955) by VO₆ octahedra which share faces in the fashion of the corundum-type structures.

The structure of V_4O_7 confirms their general description of the structures of V_nO_{2n-1} . The arrangement of oxygen atoms is in deformed hexagonal close packing and is similar to the arrangement of the oxygen atoms in the rutile-type structure. The arrangement of the octahedra of oxygen atoms in V_4O_7 is shown in Fig. 2. Because the crystallographic shear plane is parallel to (001), or $(1\overline{2}1)_r$, and the displacement of the adjacent rutile-type slabs is $\frac{1}{7}[001]$, or $\frac{1}{2}[011]_r$, the oxygen lattices are continuous but the vanadium lattices are in antiphase relation across the shear plane. The structure of V_4O_7 is, therefore, considered to consist of two portions: rutile-type and corundum-type.

Two octahedra of V(1) and V(2) constitute the crys-

tallographic shear plane of the corundum-type structure (Fig. 3) and the other two octahedra of V(3) and V(4) the rutile-type slabs (Fig. 4). The deviations of the atomic coordinates from those in the ideal structure derived by Andersson & Jahnberg are not much for most atoms, but those of O(4) amount to 0.42, 0.89 and 0.90 Å along *a*, *b* and *c* axes respectively. The results of this investigation reveal that the portion of the corundum-type structure in V₄O₇ resembles more closely the real corundum structure than the ideal structure of Andersson & Jahnberg suggests.

Because of this result and electrostatic neutrality, atomic scattering factors for V^{3+} and V^{4+} were used in the final stage of the structure analysis for the vanadium atoms in the corundum-type portions [V(1) and V(2)] and in the rutile-type portions [V(3) and V(4)] respectively, though the conclusion about the valency of the vanadium atoms has not been confirmed by this structure refinement. Temperature factors (Table 2) for all atoms are nearly consistent with other oxides: isotropic values for vanadium atoms are in the range, 0.34 to 0.45 Å², and for oxygen atoms in the range, 0.67 to 1.05 Å².

In the portion which has the corundum-type structure (Fig. 3), metal atoms shift away from the centres of the oxygen octahedra so as to become further apart because of sharing of the octahedral faces. However,

Fig. 3. Perspective view of the portion of the structure of V₄O₇ showing the corundum-type structure. Bond lengths (Å) are given.

Table 4. Bond distances (Å) and angles (°)

Table 4 (cont.)

	Symmetry	codes are give	en below		(II) Bond angles,		-	
(I) Bond dis the last d	tances. Stan igits.	dard errors i	n parentheses	apply to	V(1) octahedron	O(1)a-V(1 O(1)a-V(1 O(1)a-V(1)-O(1)f)-O(3)a)-O(4)g	76.5 ± 1.3 78.2 ± 1.4 76.9 ± 0.9
V(1)–O octahedron	V(1)-O(1) <i>a</i> V(1)-O(1) <i>f</i> V(1)-O(2) V(1)-O(3) <i>a</i> V(1)-O(4) <i>g</i> V(1)-O(6) <i>c</i> Average	2·12 (3) 1·96 (4) 1·80 (3) 1·97 (4) 2·10 (1) 1·93 (1) 1·98	O(1)a-O(1)f O(1)a-O(3)a O(1)a-O(4)g O(1)a-O(6)c O(1)f-O(2) O(1)f-O(4)g O(1)f-O(6)c O(2)-O(3)a O(2)-O(4)g O(2)-O(6)c O(3)a-O(6)c Average	$\begin{array}{c} 2\cdot53 \ (4)\\ 2\cdot58 \ (6)\\ 2\cdot62 \ (3)\\ 2\cdot75 \ (3)\\ 2\cdot86 \ (6)\\ 2\cdot69 \ (5)\\ 2\cdot90 \ (3)\\ 3\cdot00 \ (4)\\ 2\cdot95 \ (3)\\ 2\cdot87 \ (3)\\ 2\cdot87 \ (3)\\ 2\cdot82 \ (4)\\ 2\cdot77 \end{array}$	V(2) octahedron	$\begin{array}{c} O(1)a-V(1)\\ O(1)f-V(1)\\ O(1)f-V(1)\\ O(2)-V(1)\\ O(2)-V(1)\\ O(2)-V(1)\\ O(2)-V(1)\\ O(3)a-V(1)\\ O(3)a-V(1)\\ O(1)a-V(1)\\ O(1)a-V(1)\\ O(1)f-V(2)\\ O(1$	$\begin{array}{l}) -O(6)c \\) -O(2) \\) -O(4)g \\) -O(6)c \\) -O(3)a \\) -O(4)g \\) -O(6)c \\) -O(6)c \\) -O(6)c \\) -O(2) \\) -O(6)c \\) -O(2)f \\) -O(6)c \\) -O(2)f \\) -O(2)f \\) -O(3)f \\) -O(4)c \end{array}$	$\begin{array}{c} 85\cdot3\pm1\cdot0\\ 98\cdot7\pm1\cdot5\\ 83\cdot0\pm1\cdot2\\ 96\cdot3\pm1\cdot3\\ 105\cdot5\pm1\cdot7\\ 97\cdot7\pm0\cdot9\\ 100\cdot3\pm1\cdot0\\ 80\cdot5\pm1\cdot0\\ 92\cdot6\pm1\cdot1\\ 173\cdot1\pm0\cdot8\\ 152\cdot3\pm1\cdot2\\ 161\cdot8\pm1\cdot2\\ 91\cdot2\pm1\cdot1\\ 78\cdot1\pm1\cdot4\\ 82\cdot3+1\cdot1\end{array}$
V(2)–O octahedron	V(2)–O(1) <i>f</i> V(2)–O(2) <i>f</i> V(2)–O(3) <i>c</i> V(2)–O(3) <i>c</i> V(2)–O(4) <i>c</i> V(2)–O(5) <i>c</i> Average	1 •98 (3) 1 •93 (2) 1 •96 (4) 2 •12 (3) 2 •01 (2) 1 •78 (3) 1 •96	O(1)f-O(2)f O(1)f-O(3)f O(1)f-O(4)f O(1)f-O(5)c O(2)f-O(3)c O(2)f-O(3)f O(2)f-O(5)c O(3)c-O(3)f O(3)c-O(4)c O(3)f-O(5)c O(3)f-O(5)c O(4)c-O(5)c Average	$2 \cdot 80 (5)$ $2 \cdot 58 (6)$ $2 \cdot 62 (3)$ $2 \cdot 99 (3)$ $2 \cdot 67 (3)$ $2 \cdot 67 (4)$ $2 \cdot 79 (3)$ $2 \cdot 52 (3)$ $2 \cdot 64 (5)$ $2 \cdot 63 (3)$ $2 \cdot 94 (4)$ $2 \cdot 74$	V(3) octahedron	$\begin{array}{c} O(1)f - V(2)\\ O(2)f - V(2)\\ O(2)f - V(2)\\ O(3)c - V(2)\\ O(3)c - V(2)\\ O(3)c - V(2)\\ O(3)c - V(2)\\ O(3)f - V(2)\\ O(3)f - V(2)\\ O(1)f - V(2)\\ O(1)f - V(2)\\ O(1)b - V$	$\begin{array}{l} \sum -O(5)c \\ \sum -O(3)c \\ \sum -O(3)c \\ \sum -O(3)f \\ \sum -O(3)f \\ \sum -O(5)c \\ \sum -O(4)c \\ \sum -O(4)c \\ \sum -O(5)c \\ \sum -O(4)c \\ \sum -O(5)c \\ \sum -O(6) \\ \sum -O(6) \end{array}$	$105.6 \pm 1.6 \\ 95.1 \pm 1.4 \\ 82.4 \pm 1.0 \\ 97.4 \pm 1.1 \\ 76.5 \pm 1.2 \\ 83.3 \pm 1.3 \\ 99.9 \pm 1.3 \\ 79.0 \pm 0.9 \\ 101.4 \pm 1.0 \\ 152.7 \pm 1.2 \\ 161.2 \pm 1.0 \\ 176.3 \pm 1.7 \\ 82.4 \pm 1.2 \\ 92.3 \pm 1.0 \\ 87.1 \pm 0.9 \\ \end{array}$
V(3)–O octahedron	V(3)-O(1)b V(3)-O(4) V(3)-O(5)a V(3)-O(5)i V(3)-O(6) V(3)-O(7)a Average	2.03 (1) 2.06 (4) 2.00 (3) 1.98 (1) 1.95 (3) 1.90 (4) 1.99	$\begin{array}{c} O(1) & - O(4) \\ O(1)b - O(5)a \\ O(1)b - O(7)a \\ O(4) & - O(5)a \\ O(4) & - O(5)i \\ O(4) & - O(5)i \\ O(5)a - O(5)i \\ O(5)a - O(7)a \\ O(5)i - O(7)a \\ O(6) & - O(7)a \\ O(6) & - O(7)a \\ A \text{verage} \end{array}$	2.69 (5) 2.91 (3) 2.75 (3) 2.84 (3) 2.98 (4) 2.97 (3) 2.81 (6) 2.70 (3) 2.70 (6) 2.89 (3) 2.75 (5) 2.86 (4) 2.81	V(4) octahedron	$\begin{array}{c} O(1)b-V(2)\\ O(4)V(2)\\ O(4)V(2)\\ O(4)V(2)\\ O(5)a-V(2)\\ O(5)a-V(2)\\ O(5)a-V(2)\\ O(5)i-V(2)\\ O(5)i-V(2)\\ O(6)V(2)\\ O(6)V(2)\\ O(1)V(2)\\ O(2)V(2)\\ O(2)V(2)\\$	$\begin{array}{l} 3) - O(7)a \\ 3) - O(5)a \\ 3) - O(5)i \\ 3) - O(5)i \\ 3) - O(6) \\ 3) - O(7)a \\ 4) - O(3) \\ 4) - O(3) \\ 4) - O(3) \\ 4) - O(7)c \\ 4)$	$92\cdot4\pm1\cdot2\\ 87\cdot5\pm1\cdot4\\ 94\cdot7\pm1\cdot2\\ 88\cdot7\pm1\cdot4\\ 85\cdot7\pm1\cdot0\\ 87\cdot9\pm1\cdot4\\ 94\cdot7\pm1\cdot0\\ 90\cdot3\pm1\cdot1\\ 95\cdot8\pm1\cdot5\\ 176\cdot6\pm1\cdot8\\ 172\cdot9\pm0\cdot9\\ 176\cdot3\pm1\cdot6\\ 81\cdot9\pm1\cdot0\\ 86\cdot5\pm1\cdot3\\ 85\cdot1\pm1\cdot3\\ 85\cdot1\pm1\cdot3\\ 90\cdot4\pm1\cdot0\\ 86\cdot5\pm1\cdot4\\ 13\cdot26+1\cdot6\\ 85\cdot5\pm1\cdot3\\ 85\cdot1\pm1\cdot3\\ 90\cdot4\pm1\cdot0\\ 85\cdot5\pm1\cdot3\\ 85\cdot1\pm1\cdot3\\ 90\cdot4\pm1\cdot0\\ 85\cdot5\pm1\cdot3\\ 85\cdot1\pm1\cdot3\\ 90\cdot4\pm1\cdot3\\ 90\cdot4\pm1\cdot3$
V(4)-O octahedron	V(4)-O(2) V(4)-O(3) V(4)-O(4) V(4)-O(6) <i>i</i> V(4)-O(7) <i>i</i> Average	2.04 (2) 2.04 (2) 2.01 (3) 1.87 (3) 1.93 (4) 1.89 (2) 1.96	$\begin{array}{c} O(2) - O(3) \\ O(2) - O(4) \\ O(2) - O(7)c \\ O(2) - O(7)i \\ O(3) - O(4) \\ O(3) - O(6) \\ O(3) - O(6)i \\ O(4) - O(6)i \\ O(4) - O(7)i \\ O(6)i - O(7)c \\ O(6)i - O(7)i \\ O(7)c - O(7)i \end{array}$	2.67 (4) 2.78 (6) 2.69 (3) 2.79 (3) 2.64 (5) 2.81 (3) 2.90 (3) 2.90 (3) 2.94 (3) 2.94 (3) 2.93 (5) 2.80 (4) 2.61 (5)	Symmetry codes	$\begin{array}{c} O(3) & -V(i) \\ O(3) & -V(i) \\ O(3) & -V(i) \\ O(4) & -V(i) \\ O(4) & -V(i) \\ O(6)i & -V(i) \\ O(6)i & -V(i) \\ O(6)i & -V(i) \\ O(2) & -V(i) \\ O(3) & -V(i) \\ O(4) & -V(i) \\ \end{array}$	(7) - O(4) (4) - O(6)i (4) - O(7)c (4) - O(7)i (4) - O(7)i (4) - O(7)i (4) - O(7)i (4) - O(7)i (4) - O(7)i (4) - O(7)c (4) - O(7)c	$81 \cdot 3 \pm 1 \cdot 2$ $91 \cdot 7 \pm 1 \cdot 0$ $93 \cdot 8 \pm 1 \cdot 3$ $96 \cdot 4 \pm 1 \cdot 4$ $97 \cdot 6 \pm 1 \cdot 3$ $91 \cdot 5 \pm 1 \cdot 4$ $96 \cdot 1 \pm 1 \cdot 0$ $86 \cdot 2 \pm 1 \cdot 3$ $172 \cdot 5 \pm 1 \cdot 4$ $172 \cdot 2 \pm 1 \cdot 0$ $170 \cdot 7 \pm 1 \cdot 0$
V–V distanc	es	V(1) - V(2)e V(1) - V(3)c V(1) - V(3)g V(2) - V(4)c V(2) - V(4)f V(2) - V(2)d	Average	2.77 2.778 (9) 2.930 (8) 3.020 (7) 2.964 (8) 3.060 (7) 3.20 (1)	a b c d e f g h i	-1+x $-1+x$ $-x$ $1-x$ $1-x$ $2-x$ $-x$		z z z - z - z - z - z - z 1 - z

the V(1)–V(2)*e* distance is still shortest in the structure at 2.77 Å. The oxygen octahedra display large deviations from the regular octahedron as shown by the interatomic distances and bond angles (Table 4). The V(1)–O₆ and V(2)–O₆ distances change widely from 1.80 to 2.12 Å and from 1.78 to 2.12 Å respectively. The bond angles of the type O–V(1)–O are in the range 76.5 to 105.5° and 152.3 to 173.1° and those of the type O–V(2)–O in the range 76.5 to 105.6° and 152.7 to

Fig. 4. Perspective view of the portion of the structure of V_4O_7 showing the rutile-type structure. Bond lengths (Å) are given.

 $176 \cdot 3^{\circ}$, compared with 90 and 180° in the regular octahedron.

In the portion which has the rutile-type structure (Fig. 4) the deviations of the oxygen octahedra from regularity are much less than those in the corundumtype portion and vanadium atoms occupy positions almost at the centres of the octahedra. The interatomic distances of V(3)–O₆ and V(4)–O₆ are in the ranges 1.90 to 2.06 and 1.87 to 2.04 Å respectively; the bond angles of the type O–V(3)–O are in the range 82.4 to 95.8° and 172.9 to 176.6°, and those of the type O–V(4)–O, in the range 81.3 to 97.6° and 170.7 to 172.5°.

It is of interest to compare the structure of V_4O_7 with those of V_2O_3 (Newnham & Hann, 1962: V-O, 1.96 and 2.06 Å) and VO₂ (Longo & Kierkegaard, 1970: V-O, 1.762 to 2.063 Å). V_2O_3 has a corundumtype structure and VO₂ a rutile-type structure above about 70 °C. The metal atoms in corundum-type portions of the structure in V_4O_7 show a greater deviation from the centres of the oxygen octahedra than those in V_2O_3 . The portions of the rutile-type structure in V_4O_7 are very similar to the structure of the high temperature form VO₂. A comparison with the structures of other V_nO_{2n-1} will be given soon.

The authors wish to thank Professor T. Takada and Dr Y. Bando of the Institute for Chemical Research, Kyoto University for their continual interest and encouragements in this study. We also wish to thank Professor K. Oosaki and Mr S. Syoyama of Kyoto University for permitting the use of the FACOM 230-60 version of the least-squares program and Professor Y. Iitaka and Mr T. Matsusaki of the University of Tokyo, for the 3DFR Program. All the computations were performed at the Data Processing Centre, Kyoto University.

References

- ANDERSSON, S. (1960). Acta Chem. Scand. 14, 1161.
- ANDERSSON, S., COLLEN, B., KUYLENSTIERNA, U. & MAG-NELI, A. (1957). Acta Chem. Scand. 11, 1641.
- ANDERSSON, S. & JAHNBERG, L. (1963). Ark. Kem. 21, 413.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). Program ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- FUKAMACHI, T. (1971). Tech. Rep. ISSP, B, 12, 1.
- HORIUCHI, H., TOKONAMI, M., MORIMOTO, N., NAGASAWA, K., BANDO, Y. & TAKADA, T. (1972). *Mat. Res. Bull.* In the press.
- LONGO, J. M. & KIERKEGAARD, P. (1970). Acta Chem. Scand. 24, 420.
- NAGASAWA, K. (1972). Mat. Res. Bull. In the press.
- NEWNHAM, R. E. & DE HAAN, Y. M. (1962). Z. Kristallogr. 117, 235.
- SAKURAI, T. (1967). Universal Cryst. Comput. Prog. Sys. (UNICS). Tokyo: Cryst. Soc. of Japan.
- TOKONAMI, M. (1965). Acta Cryst. 19, 486.
- WADSLEY, A. D. (1955). Rev. Pure Appl. Chem. 5, 165.